Hone your skills with Makeover Monday

I don’t usually get to attend Tableau User Groups. We don’t (yet?) have one down in the depths of New Zealand’s south island, and it’s a long drive to the nearest one in Christchurch. But with New Zealand and much of the world in some form of lock down, Tableau has encouraged and supported virtual user group meetings. So I was excited to dial into this weeks virtual New Zealand Tableau User Group meeting jointly arranged by Alex, Thabata, Jeff and Paul from the Auckland, Christchurch and Wellington groups. The icing on the cake was being invited to speak about my experience with Makeover Monday!

The topic of my 30 minute slot was Hone your skills with Makeover Monday.  For those after the tips and checklist I mentioned, please read on. Or you can watch the recording of the whole session on YouTube, including the other great speakers:

  • How to do Tableau in lock-down! – Alex Waleczek
  • Hiring: Score yourself a unicorn – Sarah Burnett
  • Set It Up: When to use Set vs Parameter Actions – Heidi Kalbe

Here is the summary of the 13 tips and the example checklist I covered in my presentation.


  1. First up, my last tip: please, please, please don’t be discouraged from participating by some of the brilliant submissions you’ll see from others. Everyone has to start somewhere. And there’s nothing wrong with a quick and simple makeover. Often a simple bar chart is just what the data and story deserves.
  2. Do read the article, it’s tempting to save time by not reading it. But there is often useful context and background that you can dig into. Spending some time understanding context will usually pay you back as an analyst
  3. Remember the purpose of makeover Monday. Take the time to ask yourself what works well with the original chart and what could be improved. Doing so will help you focus on what you want to make over. Sometimes the improvements might only need to be minor – e.g. better use of colour. Sometime you may be doing a completely different chart.  Invest the time that suits you
  4. Do dig into any nuances in the data. E.g. does the data start and end partway through a year, which would impact seasonal comparisons? Or are there fields that need to be transformed or pivoted to make analysis easier? Have you understood an unusual outlier, or some peaks and troughs?
  5. Once into visual exploration I like to build up working sheets as I explore various angles. That way I can come back to points I want to focus on and refine later. As I refine these, ideas for a dashboard and sequencing start to emerge. My best advice here is to watch one of Andy Kriebel’s live Makeover Monday’s. You’ll get to see where he spends his time, how he goes about exploring data and creating a better data viz.
  6. If you plan to blog about each makeover you’ll find that that takes some time. It can help to keep notes as you review the original chart and explore the data if you plan to blog. That way you can structure them into a blog post at the end
  7. Have a checklist to go through before publishing. Some people keep a written checklist to remind themselves of key things, Otherwise it’s easy to forget about tool tips or spell checking! I’ve included an example checklist below.
  8. Do share your work – take the plunge! It’s a good way to engage and get feedback, which is a crucial part of improving your data visualisation and story telling skills.
  9. Try not get too disheartened if you get no feedback on Twitter, or even unexpected feedback. It’s very difficult to deliver feedback in a way that suits everyone on Twitter.
  10. If you want feedback register for the weekly viz review webinar. Remember to to only use the #MMVizReview hashtag if you will register for and attend the webinar otherwise it makes it harder for the organisers to prepare.
  11. Do work through and incorporate any feedback that you’re given in the viz review webinar. It helps you to reinforce the learnings, and it shows Eva and Charlie that their input is worthwhile!
  12. Don’t be discouraged if you don’t get selected in the weekly favourites. You’re one of a thousand people participating (as of May 2020) and Charlie and Eva can’t practicably see and recall every Makeover Monday tweet! Remember why you decided to take part and ensure that you’re getting what you want out of it – e.g. after two months look back at how much you’ve improved.
  13. If you benefit try to pay it forward in the future. I’ll leave that up to you, but it could be helping new Tableau users on the Tableau Forums (hint: many people find that trying to pass on their knowledge is a wonderful way to gain deeper knowledge themselves), or it could be getting involved in your local user group. Maybe you’ll take the time to encourage new Makeover Monday participants in your area!


Here is the example checklist I provided – over time you’ll find the things that help you to check that you’ve got a great makeover before you submit:

  • Right chart type
  • Improved what you set out to improve
  • Remember your audience (e.g. mobile)
  • Clear title & annotations
  • If your title is a question is it answered?
  • Consistent fonts, tool tips, etc.
  • Consistent use of colour (helps the story)
  • Simple is good (remove till you can’t)
  • Spell check and read back through it
  • Source and image credits

Those tips are things that have worked for, or stuck out to me. You can find much more information on the Makeover Monday website, including how to buy the book which covers a whole heap of data visualisation advice.

Finally as I said in the presentation, I look forward to seeing more NZ user group members in the #MakeoverMonday feed soon. Please do reach out if you need some encouragement!


Late last year I started to actively help out on the Tableau Forums. What a great decision! I’d forgotten how much fun it could be to (1) pick up a discrete challenge; (2) help others out; and (3) learn so much more in the process.

One of the questions I recently chipped in on was about circular references in a sequential calculation. The background to the question is really interesting and I ended up spending a few hours digging into epidemiological models, but that’s a different story! Whilst trying to help I took a fresh look at the PREVIOUS_VALUE function in Tableau. I have to admit, prior to this I had thought that PREVIOUS_VALUE(x) was just the same as LOOKUP(x,-1) … turns out that isn’t the case!

LOOKUP(x,-1) will return the previous value of the expression, x, in the “window” of results being presented in the view. So if you’re presenting a monthly sum of [order value], LOOKUP(SUM([order value]),-1) can give you the sum of order value from the prior month*. Handy eh!

PREVIOUS_VALUE(x) is actually saying get the result of this entire calculation from the previous result in the window. And whilst LOOKUP returns NULL on the first result, PREVIOUS_VALUE will return the passed in expression, x, as the first result.

Your initial thoughts might be that these  aren’t much different, but the real power is when you want to do more with your calculation. Let’s say you have:

yA = 2 * LOOKUP(x,-1)


In the case of the LOOKUP above you’re always just looking up the last value of x and then multiplying by 2. With PREVIOUS_VALUE you’re starting with x and multiplying by 2, but then each subsequent call is actually looking up the last value of the overall expression – i.e including the  previous multiplication by 2 – then multiplying by 2 again.

So the first yB = 2 * x.

The second yB = 2 * (2 * x) … and so on.

That’s pretty powerful!

The Tableau expression help gives a couple of great examples. The first is to calculate a running sum, and of course you could use RUNNING_SUM for that instead. The second example is pretty cool though – a running product!


I built this viz on Tableau Public to help illustrate the difference in the example I used above. Feel free to download it and have a play.



During subsequent discussions on Twitter Jim Dehner (Tableau Ambassador and top forum contributor) pointed out some additional differences with PREVIOUS_VALUE. I’m yet to dig into these but leave them here in case they help you … “previous value will return the single previous value and can not be chained or used in certain table calculations like running sums -  Lookup is a table calculation that moves from the current “cell” location up, down, left or right by any increment – it can be nested”. I also need to credit Jim for reminding me about the handy example in the Tableau calculation wizard / function help that I included above.


* with table calculations you get to define how they traverse the window. If you’re displaying a table of months, where each month is a row in your view (i.e. month is on the rows shelf), and you want to LOOKUP the value from the prior month, then you could compute the lookup using “table down”. That way the window progresses down the list of months, and you’re looking up the value from the row above. Table across is often used when you’re calculating a cumulative total on a line graph with time on the horizontal axis (columns). You can define more complex ways to compute the order of the window. And you can specify when to restart the calculation, e.g. to get a separate monthly running total per year.

Makeover Monday, 2019 #26

An interesting and deceptively simple data set on alcohol consumption by country for 2019 week 26.

I like the simplicity of the table of data and the factors affecting the top 25 that are discussed in the article. The chart itself would be better as bars not columns in my opinion, allowing the country names to be laid out for easier reading. As Eva noted in her submission showing liters of pure alcohol consumed per capita per year isn’t that easy to relate to. Digging into the definitions for standard drinks / units I was surprised to find that there is quite a range, and that some countries still don’t define a standard drink. I decided to focus on that aspect for my makeover.

Interactive version on Tableau Public: here.


Makeover Monday, 2019 #3

Andy Kriebel selected a data set about US workers paid at/below the minimum wage for those choosing to participate in week 3, 2019.

The original viz highlights some of the regional differences for 2017 by showing the data geographically. I like that I can see regional differences, but I found myself wanting to see the trend over time (as it’s available in the data set) to see if the geographical trends are part of an ongoing story.

So for my makeover I’ve kept things pretty simple and separated the different regions and sub-regions. Adding the overall line for the US and differentiating values above / below this in different colours helps to tell the story. A state highlighter allows users to focus in on one state if they want to – this is quick built in functionality for Tableau (right click a dimension and set as highlighter). I spent a lot of time in the depths of SQL Server geography queries for last week’s makeover, so it was refreshing to step back to simple built in Tableau functionality for week 3!

Interactive viz: here on Tableau Public.

Static image:



Makeover Monday, 2019 #1

Makeover Monday 2019 week 1 looks at NHL attendances since the 2000-01 season.

A couple of things emerge from an exploration of the data set provided: firstly there are seasons where labour disputes, or lockouts, dramatically affect attendances. Secondly some teams have different stories to the general trend. I spent most of my time exploring and presenting the lockout story, but added a team selector to allow users to explore average game attendance by team.

Interactive version on Tableau Public is available here.


Leading with questions

I was preparing for our company celebration of CX Day 2018  on Tuesday and was reminded of this great interview with Warren Berger on the IDEOU site. The interview drills into the power of questions, and how the right question can lead to a breakthrough and real innovation. The bit that sticks out for me is the question that led to the Polaroid instant camera:

One of my favourite questions is the question that led to the Polaroid Instant Camera back in the 1940s. The four-year-old daughter of the founder of Polaroid asked: Why do we have to wait for the picture? One of the reasons why four-year-olds are good at asking questions is because they don’t have a lot of assumptions and they look at things with a beginner’s mind … Many things begin with a question. It’s this catalytic force. When you arrive at an interesting question and take ownership of that question, it can lead you to innovation.


My take away: when you’re leading a group of creative people, you don’t need all of the answers; you don’t need your assumptions or your preconceived options for a solution; often you just need a really great question!

Copy and paste text boxes in Tableau

Christina Gorga recently commented on Twitter that she would love the ability to copy or duplicate text boxes on Tableau dashboards.

The tweet attracted favourable attention, with 44 likes. One reason the feature is seen as useful is that it could reduce the time taken to copy formatting throughout a dashboard; styling like fonts, sizes, colours, borders. How much of a pain is it to reapply these to multiple text boxes?

The good news is that there is a Tableau feature request (idea) to copy and paste objects in a dashboard, and we can vote for that to try to get it onto the product roadmap! Like any product development team I’m sure Tableau have to prioritise their investment, and up voting ideas gives them an idea of what to focus on.

In the meantime, if you’re willing to take some risks in a non-critical Tableau dashboard, there is already a way to copy and paste text boxes. I’ve seen this idea mentioned on the forums by Andy Cotgreave, and he quite rightly points out that it is likely to be unsupported. So if you’re going to try it, then take a back up of your workbook first. I’ll tell you more about why this is important towards the end of this post! For now trust me and take a backup.

Right let’s work through the how to guide. Please do excuse the awful dashboard design; it’s purely to illustrate the approach.

How to copy and past text boxes in Tableau

Note that this approach is for floating layouts!

Step 1 is to setup an outline dashboard and add your template text box – this is the text box format you want to copy throughout. In this example it’s the text in the top left and I’d like to duplicate the style in the bottom left and bottom right.


Step 2 is to close your workbook and open up the .twb in a text editor (like notepad) instead of Tableau Desktop. The file is mainly metadata about how to transform and display the actual data in your data sources, and is encoded in XML. XML is generally human readable and, importantly to us in this case, human editable. Once open in a text editor find the section that starts “dashboards”. Within this section you should find a section for your particular “dashboard”. I’ve highlighted the section for my dashboard below:


I’ve also added some annotations to draw your attention to two parts. A is a zone of type=”text”. As you can see part way down and to the right, it includes the text that I placed at the top of my dashboard. You can see other layout and formatting elements and attributes in this overall section like x and y coordinates, height and width and some styling. One aspect not included here is text alignment. You can see that in the section of XML I’ve marked B.

Step 3 is to copy that <zone … id=”X” …>…</zone>  element of XML (in my case X=1, but your case will likely differ). I’m going to paste that block back in twice (as I want two more text boxes) and I’m going to paste at the bottom of the zones section, just before the </zones> closing tag, as you can see in the next screenshot:


What you’ll see I’ve also done is

  • updated the id=”…” for each of the copies I’ve pasted in to be the next highest id number based on the preceding zones.
  • updated the x=”…” and y=”…” coordinate values appropriately (I made my life easy here by having a 2×2 grid where I’d already added elements to two spots, so I can just copy the appropriate x and y value from preceding zones, and I didn’t need to edit width and height). Don’t be phased by the x, y, width and height values not looking like the corresponding pixel values in Tableau Desktop. You can always grab your calculator and work out what you need from other values, or just offset enough from other zones that you can subsequently fix it up in Tableau.
  • finally I updated the text in the formatted-text > run elements. You don’t have to do this here in the text editor though, as you’ll be able to edit it in Tableau Desktop too.

Cool. Save those changes, close your text editor and …

Step 4: Reopen the workbook in Tableau Desktop. You should see that the pasted text boxes show up with pretty much the same styling:


There is one slight problem though - the text alignment isn’t the same. We can fix this!

Step 5 in this guide is to close Tableau Desktop, reopen the .twb in a text editor and add a bit more XML. Obviously if or when you are doing this for real you’ll do step 5 at the same time as step 3 above. We need to copy and paste the text- and vertical-align format styles too as illustrated here:


You’ll see that I’ve had to derive the relevant id=”dash-text_X” value. The X matches the id chosen for the previously pasted in zones. Save your changes again.

Step 6 is to reopen in Tableau Desktop and you should see correctly aligned text:


There you go. Copy and pasting text boxes in Tableau!

Yeh, but…

I went on to try copy and pasting a non-text box zone. I copied a chart zone and edited the id, and changed the name to another unused chart from my workbook. When I reopened the workbook in Tableau Desktop I got an error. The error told me to contact support. I’m pretty sure Tableau Support don’t want to hear from me after I’ve hacked the underling XML. And I’m pretty sure I know what one of their first questions would be; “do you have a backup you can revert to?”!

I’ve used this approach to copying and pasting text boxes for a couple of Makeover Monday submissions, but not on work projects. Nevertheless I believe I’ve learnt a bit from the underlying XML behind my workbooks, and it makes me think that if the idea referenced above is up voted enough it wouldn’t be a big stretch for the development team to iterate some potentially very well received functionality.

PS. if you want know more about XML, then check out this resource.

Makeover Monday, 2018 #35

A couple of my colleagues are giving Makeover Monday a go to practice some recent Tableau Desktop training, so I’m back into it too! This week we were given a data set from Figure Eight about wearable tech products, with the challenge to makeover the charts in this article from 2014, about where we are wearing our wearable tech.

The charts are simple, clear bar charts. For me it could be made clearer that the charts don’t indicate what products sell well, and hence what tech is actually worn most, and where. Also we don’t get to see the inter-relationships; are lifestyle products worn on a different part of the body to health products or entertainment products? For my makeover I wanted to take a look at these angles whilst retaining the simplicity of the bar charts. I’ve minimised styling because one of the team is keen to see how to move away from Tableau defaults for fonts, grid lines, etc.

The makeover follows below. Or you can click through to the interactive version where the highlight picker at the bottom lets you explore the inter-relationships (e.g. try picking entertainment to see where those devices are worn and who produces them).


Makeover Monday, 2018 #22

Where is some of the worlds priciest residential property? For week 22 of #MakeoverMonday we look at a World Economic Forum chart trying to answer that question.

On first glance the chart is nice and clear, but is a tree map the right type of chart to use when we’re not looking at parts of a whole? A number of community members have suggested it is not, and for me that detail shouldn’t be left to the chart footnote just in case the chart is used in a standalone setting. The sort order of the areas isn’t super intuitive either, with the most expensive city in the top right.

I felt that areas worked well for the topic – square meters of real estate – but have overlaid them to allow the different cities to be more easily compared. This approach also removes the issue of not showing parts of a whole. I’ve tried for a blue-print like look and feel. Picking courier new to complement that. In hindsight that perhaps doesn’t work with a theme of wealth and costliness.

Tableau public version.

Pricey Property

Makeover Monday, 2018 #21

How accurate were the Guardian Sports writers’ predictions for the 2017-18 English Premier League? According to this visualisation, which was picked for week 21 of makeover Monday, the predictions were not that great. I decided to have a play with removing inaccurate predictions; after all once you get one wrong you’ll end up with at least one other prediction wrong too right? E.g. getting first and second the wrong way around. I was intrigued to see if the Guardian had more of the sequence correct than it seemed at first glance. Arguably they did have more right – 11 was the number I got to.

Tableau public version here.